Publications by Author: Mark J. Uline

W

Wei, Xiaojun, Aditya Choudhary, Leon Y. Wang, Lixing Yang, Mark J. Uline, Mario Tagliazucchi, Qian Wang, Dmitry Bedrov, and Liu Chang. (2024) 2024. “Single-Molecule Profiling of Per-and Polyfluoroalkyl Substances by Cyclodextrin Mediated Host-Guest Interactions Within a Biological Nanopore”. Science Advances 10 (45).

Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.

Waigi, Emily W., Clinton Webb, Melissa A. Moss, Mark J. Uline, Cameron G. McCarthy, and Camilla Ferreira Wenceslau. (2023) 2023. “Soluble and Insoluble Protein Aggregates, Endoplasmic Reticulum Stress, and Vascular Dysfunction in Alzheimer’s Disease and Cardiovascular Diseases”. Geroscience 45 (3): 1411-38.

Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person’s ability to perform everyday activities. Alzheimer’s disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases.

Wei, Xiaojun, Tadas Penkauskas, Joseph E. Reiner, Celeste Kennard, Mark J. Uline, Qian Wang, Sheng Li, Aleksei Aksimentiev, Joseph WF Robertson, and Liu Chang. (2023) 2023. “Engineering Biological Nanopore Approaches Toward Protein Sequencing”. ACS Nano 17 (17): 16369-95.

Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.

S

Shazly, Tarek, John F. Eberth, Colton J. Kostelnik, Mark J. Uline, Vipul C. Chitalia, Francis G. Spinale, Ahmed A. Alshareef, and Vijaya B. Kolachalama. (2024) 2024. “Hydrophilic Coating Microstructure Mediates Acute Drug Transfer in Drug-Coated Balloon Therapy”. ACS Applied Bio Materials 7 (5): 3041-49.

Drug-coated balloon (DCB) therapy is a promising endovascular treatment for obstructive arterial disease. The goal of DCB therapy is restoration of lumen patency in a stenotic vessel, whereby balloon deployment both mechanically compresses the offending lesion and locally delivers an antiproliferative drug, most commonly paclitaxel (PTX) or derivative compounds, to the arterial wall. Favorable long-term outcomes of DCB therapy thus require predictable and adequate PTX delivery, a process facilitated by coating excipients that promotes rapid drug transfer during the inflation period. While a variety of excipients have been considered in DCB design, there is a lack of understanding about the coating-specific biophysical determinants of essential device function, namely, acute drug transfer. We consider two hydrophilic excipients for PTX delivery, urea (UR) and poly(ethylene glycol) (PEG), and examine how compositional and preparational variables in the balloon surface spray-coating process impact resultant coating microstructure and in turn acute PTX transfer to the arterial wall. Specifically, we use scanning electron image analyses to quantify how coating microstructure is altered by excipient solid content and balloon-to-nozzle spray distance during the coating procedure and correlate obtained microstructural descriptors of coating aggregation to the efficiency of acute PTX transfer in a one-dimensional ex vivo model of DCB deployment. Experimental results suggest that despite the qualitatively different coating surface microstructures and apparent PTX transfer mechanisms exhibited with these excipients, the drug delivery efficiency is generally enhanced by coating aggregation on the balloon surface. We illustrate this microstructure–function relation with a finite element-based computational model of DCB deployment, which along with our experimental findings suggests a general design principle to increase drug delivery efficiency across a broad range of DCB designs.

Shazly, Tarek, Mark J. Uline, Clinton Webb, Breanna Pederson, John F. Eberth, and Vijaya B. Kolachalama. (2023) 2023. “Novel Payloads to Mitigate Maladaptive Inward Arterial Remodeling in Drug-Coated Balloon Therapy”. Journal of Biomechanical Engineering 145 (12).

Drug-coated balloon therapy is a minimally invasive endovascular approach to treat obstructive arterial disease, with increasing utilization in the peripheral circulation due to improved outcomes as compared to alternative interventional modalities. Broader clinical use of drug-coated balloons is limited by an incomplete understanding of device- and patient-specific determinants of treatment efficacy, including late outcomes that are mediated by postinterventional maladaptive inward arterial remodeling. To address this knowledge gap, we propose a predictive mathematical model of pressure-mediated femoral artery remodeling following drug-coated balloon deployment, with account of drug-based modulation of resident vascular cell phenotype and common patient comorbidities, namely, hypertension and endothelial cell dysfunction. Our results elucidate how postinterventional arterial remodeling outcomes are altered by the delivery of a traditional anti-proliferative drug, as well as by codelivery with an anti-contractile drug. Our findings suggest that codelivery of anti-proliferative and anti-contractile drugs could improve patient outcomes following drug-coated balloon therapy, motivating further consideration of novel payloads in next-generation devices.

Q

Qin, Xiaoxue, Jiahuiyu Fang, Ariana Annie Chen, Pranab Sarker, Md Symon Jahan Sajib, Mark J. Uline, and Tao Wei. (2024) 2024. “Hydration and Antibiofouling Behavior of Zwitterionic Polycarboxybetaine-Grafted Surfaces Studied With Atomistic Simulations”. Langmuir 41 (1): 1005-12.

Fouling-resistant coating materials have important applications in marine industry and biomedicine. Zwitterionic carboxybetaine polymers have demonstrated robust antibiofouling functionalities in experiments. In this work, we performed atomistic molecular dynamics simulations to study the molecular mechanism of hydration and antibiofouling of poly(carboxybetaine acrylamide) (polyCBAA) brush surfaces. We focused on the zwitterionic carboxybetaine, which has only a short methylene spacer between the positive quaternary ammonium and the negative carboxylate groups. Our study shows that a large amount of water is present within the polyCBAA surface, and a condensed water layer of single-molecular thickness covers the top of the polymer surface. Moreover, the clustering of the zwitterionic chains results in an amorphous structure of the polymer surface, a reduced degree of order in the interfacial water molecules, and weak protein attachment. The low protein desorption free energy demonstrates that the polyCBAA surface exhibits strong fouling resistance due to its significant interfacial hydration and the small dipole moment of the carboxybetaine group, minimizing protein–surface electrostatic interactions. Our study at the molecular level will be important to the future development of zwitterionic materials.

Qin, Xiaoxue, Ariana Annie Chen, Jiahuiyu Fang, Pranab Sarker, Mark J. Uline, and Tao Wei. (2024) 2024. “Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized With TMAO and Short Fluorocarbon”. Langmuir 40 (45): 23994-1.

Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface–protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine N-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.

K

Kockelkoren, Gabriele, Line Lauritsen, Christopher G. Shuttle, Eleftheria Kazepidou, Ivana Vonkova, Yunxiao Zhang, Artù Breuer, et al. (2024) 2024. “Molecular Mechanism of GPCR Spatial Organization at the Plasma Membrane”. Nature Chemical Biology 20 (2): 142-50.

G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm-1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape.

C

Corti, David S., and Mark J. Uline. (2015) 2025. “Chemical Damping of the Motion of a Piston: Irreversibilities Arising from Nonequilibrium Conditions on the Chemical Potential”. European Journal of Physics 46 (2).

We revisit the thermodynamic analysis of an isothermal ideal gas mixture enclosed within a cylinder and separated from the surrounding atmosphere by a movable and frictionless piston. When equilibrium conditions based on the chemical potentials of one or more species in the mixture are not satisfied at all times, which occurs for example for a chemical reaction with finite and non-zero reaction rates in the forward and reverse directions and for mass transfer of one species across a permeable membrane occurring at a finite and non-zero rate, an irreversibility is necessarily introduced into the system with a resulting increase in the entropy of the Universe. Consequently, when the piston is set in motion, it cannot oscillate indefinitely. The piston must again come to rest despite there not being any mechanical dissipative mechanisms, i.e. friction or viscous dissipation, nor a thermal dissipative mechanism, i.e. irreversible heat transfer, operating within the system. Only when the system is reversible, such that the entropy of the Universe remains constant at all times, will the piston oscillate indefinitely. 'Chemical damping,' or an irreversibility arising from nonequilibrium conditions on the chemical potential, provides another dissipative mechanism that has not yet been analyzed before.

Corti, David S., Donya Ohadi, Ricardo Fariello, and Mark J. Uline. (2023) 2023. “Microcanonical Thermodynamics of Small Ideal Gas Systems”. The Journal of Physical Chemistry B 127 (15): 3431-42.

We consider the thermal, mechanical, and chemical contact of two subsystems composed of ideal gases, both of which are not in the thermodynamic limit. After contact, the combined system is isolated, and the entropy is determined through the use of its standard connection to the phase space density (PSD), where only those microstates at a given energy value are counted. The various intensive properties of these small systems that follow from a derivative of the PSD, such as the temperature, pressure, and chemical potential (evaluated via a backward difference), while equal when the two subsystems are in equilibrium are nevertheless found not to behave in accordance with what is expected from macroscopic thermodynamics. Instead, it is the entropy, defined from its connection to the PSD, that still controls the behavior of these small (nonextensive) systems. We also analyze the contact of these two subsystems utilizing an alternative entropy definition, through its proposed connection to the phase space volume (PSV), where all microstates at or below a given energy value are counted. We show that certain key properties of these small systems obtained with the PSV either do not become equal or do not consistently describe the two subsystems when in contact, suggesting that the PSV should not be used for analyzing the behavior of small isolated systems.