Publications by Author: Andrew K. Knutsen

U

Upadhyay, Kshitiz, Roshan Jagani, Dimitris G. Giovanis, Ahmed A. Alshareef, Andrew K. Knutsen, Curtis L. Johnson, Aaron Carass, Philip V. Bayly, Michael D. Shields, and KT Ramesh. 2024. “Effect of Human Head Shape on the Risk of Traumatic Brain Injury: A Gaussian Process Regression-Based Machine Learning Approach”. Military Medicine 189 (Supplement 3): 608-17.

Introduction

Computational head injury models are promising tools for understanding and predicting traumatic brain injuries. However, most available head injury models are “average” models that employ a single set of head geometry (e.g., 50th-percentile U.S. male) without considering variability in these parameters across the human population. A significant variability of head shapes exists in U.S. Army soldiers, evident from the Anthropometric Survey of U.S. Army Personnel (ANSUR II). The objective of this study is to elucidate the effects of head shape on the predicted risk of traumatic brain injury from computational head injury models.

Materials and Methods

Magnetic resonance imaging scans of 25 human subjects are collected. These images are registered to the standard MNI152 brain atlas, and the resulting transformation matrix components (called head shape parameters) are used to quantify head shapes of the subjects. A generative machine learning model is used to generate 25 additional head shape parameter datasets to augment our database. Head injury models are developed for these head shapes, and a rapid injurious head rotation event is simulated to obtain several brain injury predictor variables (BIPVs): Peak cumulative maximum principal strain (CMPS), average CMPS, and the volume fraction of brain exceeding an injurious CMPS threshold. A Gaussian process regression model is trained between head shape parameters and BIPVs, which is then used to study the relative sensitivity of the various BIPVs on individual head shape parameters. We distinguish head shape parameters into 2 types: Scaling components Txx⁠, Tyy⁠, and Tzz that capture the breadth, length, and height of the head, respectively, and shearing components (⁠Txy,Txz,Tyx,Tyz,Tzx⁠, and Tzy⁠) that capture the relative skewness of the head shape.

Results

An overall positive correlation is evident between scaling components and BIPVs. Notably, a very high, positive correlation is seen between the BIPVs and the head volume. As an example, a 57% increase in peak CMPS was noted between the smallest and the largest investigated head volume parameters. The variation in shearing components Txy,Txz,Tyx,Tyz,Tzx⁠, and Tzy on average does not cause notable changes in the BIPVs. From the Gaussian process regression model, all 3 BIPVs showed an increasing trend with each of the 3 scaling components, but the BIPVs are found to be most sensitive to the height dimension of the head. From the Sobol sensitivity analysis, the Tzz scaling parameter contributes nearly 60% to the total variance in peak and average CMPS; Tyy contributes approximately 20%, whereas Txx contributes less than 5%. The remaining contribution is from the 6 shearing components. Unlike peak and average CMPS, the VF-CMPS BIPV is associated with relatively evenly distributed Sobol indices across the 3 scaling parameters. Furthermore, the contribution of shearing components on the total variance in this case is negligible.

Conclusions

Head shape has a considerable influence on the injury predictions of computational head injury models. Available “average” head injury models based on a 50th-percentile U.S. male are likely associated with considerable uncertainty. In general, larger head sizes correspond to greater BIPV magnitudes, which point to potentially a greater injury risk under rapid neck rotation for people with larger heads.

E

Escarcega, Jordan D., Andrew K. Knutsen, Ahmed A. Alshareef, Curtis L. Johnson, Ruth J. Okamoto, Dzung L. Pham, and Philip V. Bayly. 2023. “Comparison of Deformation Patterns Excited in the Human Brain in Vivo by Harmonic and Impulsive Skull Motion”. Journal of Biomechanical Engineering 145 (8).

Noninvasive measurements of brain deformation in human participants in vivo are needed to develop models of brain biomechanics and understand traumatic brain injury (TBI). Tagged magnetic resonance imaging (tagged MRI) and magnetic resonance elastography (MRE) are two techniques to study human brain deformation; these techniques differ in the type of motion and difficulty of implementation. In this study, oscillatory strain fields in the human brain caused by impulsive head acceleration and measured by tagged MRI were compared quantitatively to strain fields measured by MRE during harmonic head motion at 10 and 50 Hz. Strain fields were compared by registering to a common anatomical template, then computing correlations between the registered strain fields. Correlations were computed between tagged MRI strain fields in six participants and MRE strain fields at 10 Hz and 50 Hz in six different participants. Correlations among strain fields within the same experiment type were compared statistically to correlations from different experiment types. Strain fields from harmonic head motion at 10 Hz imaged by MRE were qualitatively and quantitatively similar to modes excited by impulsive head motion, imaged by tagged MRI. Notably, correlations between strain fields from 10 Hz MRE and tagged MRI did not differ significantly from correlations between strain fields from tagged MRI. These results suggest that low-frequency modes of oscillation dominate the response of the brain during impact. Thus, low-frequency MRE, which is simpler and more widely available than tagged MRI, can be used to illuminate the brain's response to head impact.